Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 436(6): 168486, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336197

RESUMO

Membrane proteins play crucial roles in various cellular processes, and their interactions with other proteins in and on the membrane are essential for their proper functioning. While an increasing number of structures of more membrane proteins are being determined, the available structure data is still sparse. To gain insights into the mechanisms of membrane protein complexes, computational docking methods are necessary due to the challenge of experimental determination. Here, we introduce Mem-LZerD, a rigid-body membrane docking algorithm designed to take advantage of modern membrane modeling and protein docking techniques to facilitate the docking of membrane protein complexes. Mem-LZerD is based on the LZerD protein docking algorithm, which has been constantly among the top servers in many rounds of CAPRI protein docking assessment. By employing a combination of geometric hashing, newly constrained by the predicted membrane height and tilt angle, and model scoring accounting for the energy of membrane insertion, we demonstrate the capability of Mem-LZerD to model diverse membrane protein-protein complexes. Mem-LZerD successfully performed unbound docking on 13 of 21 (61.9%) transmembrane complexes in an established benchmark, more than shown by previous approaches. It was additionally tested on new datasets of 44 transmembrane complexes and 92 peripheral membrane protein complexes, of which it successfully modeled 35 (79.5%) and 15 (16.3%) complexes respectively. When non-blind orientations of peripheral targets were included, the number of successes increased to 54 (58.7%). We further demonstrate that Mem-LZerD produces complex models which are suitable for molecular dynamics simulation. Mem-LZerD is made available at https://lzerd.kiharalab.org.


Assuntos
Proteínas de Membrana , Algoritmos , Proteínas de Membrana/química , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Software
2.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38106114

RESUMO

Protein-peptide interactions play a key role in biological processes. Understanding the interactions that occur within a receptor-peptide complex can help in discovering and altering their biological functions. Various computational methods for modeling the structures of receptor-peptide complexes have been developed. Recently, accurate structure prediction enabled by deep learning methods has significantly advanced the field of structural biology. AlphaFold (AF) is among the top-performing structure prediction methods and has highly accurate structure modeling performance on single-chain targets. Shortly after the release of AlphaFold, AlphaFold-Multimer (AFM) was developed in a similar fashion as AF for prediction of protein complex structures. AFM has achieved competitive performance in modeling protein-peptide interactions compared to previous computational methods; however, still further improvement is needed. Here, we present DistPepFold, which improves protein-peptide complex docking using an AFM-based architecture through a privileged knowledge distillation approach. DistPepFold leverages a teacher model that uses native interaction information during training and transfers its knowledge to a student model through a teacher-student distillation process. We evaluated DistPepFold's docking performance on two protein-peptide complex datasets and showed that DistPepFold outperforms AFM. Furthermore, we demonstrate that the student model was able to learn from the teacher model to make structural improvements based on AFM predictions.

3.
bioRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37961264

RESUMO

Membrane proteins play crucial roles in various cellular processes, and their interactions with other proteins in and on the membrane are essential for their proper functioning. While an increasing number of structures of more membrane proteins are being determined, the available structure data is still sparse. To gain insights into the mechanisms of membrane protein complexes, computational docking methods are necessary due to the challenge of experimental determination. Here, we introduce Mem-LZerD, a rigid-body membrane docking algorithm designed to take advantage of modern membrane modeling and protein docking techniques to facilitate the docking of membrane protein complexes. Mem-LZerD is based on the LZerD protein docking algorithm, which has been constantly among the top servers in many rounds of CAPRI protein docking assessment. By employing a combination of geometric hashing, newly constrained by the predicted membrane height and tilt angle, and model scoring accounting for the energy of membrane insertion, we demonstrate the capability of Mem-LZerD to model diverse membrane protein-protein complexes. Mem-LZerD successfully performed unbound docking on 13 of 21 (61.9%) transmembrane complexes in an established benchmark, more than shown by previous approaches. It was additionally tested on new datasets of 44 transmembrane complexes and 92 peripheral membrane protein complexes, of which it successfully modeled 35 (79.5%) and 15 (16.3%) complexes respectively. When non-blind orientations of peripheral targets were included, the number of successes increased to 54 (58.7%). We further demonstrate that Mem-LZerD produces complex models which are suitable for molecular dynamics simulation. Mem-LZerD is made available at https://lzerd.kiharalab.org.

4.
Proteins ; 91(12): 1658-1683, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37905971

RESUMO

We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody-antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their five best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High-quality models were produced for about 40% of the targets compared to 8% two years earlier. This remarkable improvement is due to the wide use of the AlphaFold2 and AlphaFold2-Multimer software and the confidence metrics they provide. Notably, expanded sampling of candidate solutions by manipulating these deep learning inference engines, enriching multiple sequence alignments, or integration of advanced modeling tools, enabled top performing groups to exceed the performance of a standard AlphaFold2-Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem.


Assuntos
Algoritmos , Mapeamento de Interação de Proteínas , Mapeamento de Interação de Proteínas/métodos , Conformação Proteica , Ligação Proteica , Simulação de Acoplamento Molecular , Biologia Computacional/métodos , Software
5.
Methods Mol Biol ; 2690: 355-373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450159

RESUMO

Interactions of proteins with other macromolecules have important structural and functional roles in the basic processes of living cells. To understand and elucidate the mechanisms of interactions, it is important to know the 3D structures of the complexes. Proteomes contain numerous protein-protein complexes, for which experimentally determined structures often do not exist. Computational techniques can be a practical alternative to obtain useful complex structure models. Here, we present a web server that provides access to the LZerD and Multi-LZerD protein docking tools, which can perform both pairwise and multi-chain docking. The web server is user-friendly, with options to visualize the distribution and structures of binding poses of top-scoring models. The LZerD web server is available at https://lzerd.kiharalab.org . This chapter dictates the algorithm and step-by-step procedure to model the monomeric structures with AttentiveDist, and also provides the detail of pairwise LZerD docking, and multi-LZerD. This also provided case studies for each of the three modules.


Assuntos
Biologia Computacional , Software , Simulação de Acoplamento Molecular , Biologia Computacional/métodos , Algoritmos , Proteoma , Internet , Ligação Proteica
6.
Proteomics ; 23(17): e2200323, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365936

RESUMO

Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric state from the structure of the crystal lattice represent outstanding challenges. A community-wide effort was launched to tackle these challenges. The latest resources on protein complexes and interfaces were exploited to derive a benchmark dataset consisting of 1677 homodimer protein crystal structures, including a balanced mix of physiological and non-physiological complexes. The non-physiological complexes in the benchmark were selected to bury a similar or larger interface area than their physiological counterparts, making it more difficult for scoring functions to differentiate between them. Next, 252 functions for scoring protein-protein interfaces previously developed by 13 groups were collected and evaluated for their ability to discriminate between physiological and non-physiological complexes. A simple consensus score generated using the best performing score of each of the 13 groups, and a cross-validated Random Forest (RF) classifier were created. Both approaches showed excellent performance, with an area under the Receiver Operating Characteristic (ROC) curve of 0.93 and 0.94, respectively, outperforming individual scores developed by different groups. Additionally, AlphaFold2 engines recalled the physiological dimers with significantly higher accuracy than the non-physiological set, lending support to the reliability of our benchmark dataset annotations. Optimizing the combined power of interface scoring functions and evaluating it on challenging benchmark datasets appears to be a promising strategy.


Assuntos
Proteínas , Reprodutibilidade dos Testes , Proteínas/metabolismo , Ligação Proteica
7.
Biomolecules ; 13(4)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-37189363

RESUMO

Lowe Syndrome (LS) is a condition due to mutations in the OCRL1 gene, characterized by congenital cataracts, intellectual disability, and kidney malfunction. Unfortunately, patients succumb to renal failure after adolescence. This study is centered in investigating the biochemical and phenotypic impact of patient's OCRL1 variants (OCRL1VAR). Specifically, we tested the hypothesis that some OCRL1VAR are stabilized in a non-functional conformation by focusing on missense mutations affecting the phosphatase domain, but not changing residues involved in binding/catalysis. The pathogenic and conformational characteristics of the selected variants were evaluated in silico and our results revealed some OCRL1VAR to be benign, while others are pathogenic. Then we proceeded to monitor the enzymatic activity and function in kidney cells of the different OCRL1VAR. Based on their enzymatic activity and presence/absence of phenotypes, the variants segregated into two categories that also correlated with the severity of the condition they induce. Overall, these two groups mapped to opposite sides of the phosphatase domain. In summary, our findings highlight that not every mutation affecting the catalytic domain impairs OCRL1's enzymatic activity. Importantly, data support the inactive-conformation hypothesis. Finally, our results contribute to establishing the molecular and structural basis for the observed heterogeneity in severity/symptomatology displayed by patients.


Assuntos
Síndrome Oculocerebrorrenal , Humanos , Síndrome Oculocerebrorrenal/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/química , Mutação , Mutação de Sentido Incorreto , Fenótipo
8.
Proteomics ; 23(17): e2200322, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36529945

RESUMO

Proteins and nucleic acids are key components in many processes in living cells, and interactions between proteins and nucleic acids are often crucial pathway components. In many cases, large flexibility of proteins as they interact with nucleic acids is key to their function. To understand the mechanisms of these processes, it is necessary to consider the 3D atomic structures of such protein-nucleic acid complexes. When such structures are not yet experimentally determined, protein docking can be used to computationally generate useful structure models. However, such docking has long had the limitation that the consideration of flexibility is usually limited to small movements or to small structures. We previously developed a method of flexible protein docking which could model ordered proteins which undergo large-scale conformational changes, which we also showed was compatible with nucleic acids. Here, we elaborate on the ability of that pipeline, Flex-LZerD, to model specifically interactions between proteins and nucleic acids, and demonstrate that Flex-LZerD can model more interactions and types of conformational change than previously shown.


Assuntos
Ácidos Nucleicos , Conformação Proteica , Ligação Proteica , Ácidos Nucleicos/metabolismo , Proteínas/metabolismo
9.
Front Mol Biosci ; 9: 969394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090027

RESUMO

Numerous biological processes in a cell are carried out by protein complexes. To understand the molecular mechanisms of such processes, it is crucial to know the quaternary structures of the complexes. Although the structures of protein complexes have been determined by biophysical experiments at a rapid pace, there are still many important complex structures that are yet to be determined. To supplement experimental structure determination of complexes, many computational protein docking methods have been developed; however, most of these docking methods are designed only for docking with two chains. Here, we introduce a novel method, RL-MLZerD, which builds multiple protein complexes using reinforcement learning (RL). In RL-MLZerD a multi-chain assembly process is considered as a series of episodes of selecting and integrating pre-computed pairwise docking models in a RL framework. RL is effective in correctly selecting plausible pairwise models that fit well with other subunits in a complex. When tested on a benchmark dataset of protein complexes with three to five chains, RL-MLZerD showed better modeling performance than other existing multiple docking methods under different evaluation criteria, except against AlphaFold-Multimer in unbound docking. Also, it emerged that the docking order of multi-chain complexes can be naturally predicted by examining preferred paths of episodes in the RL computation.

10.
J Mol Biol ; 434(21): 167820, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36089054

RESUMO

Proteins are key components in many processes in living cells, and physical interactions with other proteins and nucleic acids often form key parts of their functions. In many cases, large flexibility of proteins as they interact is key to their function. To understand the mechanisms of these processes, it is necessary to consider the 3D structures of such protein complexes. When such structures are not yet experimentally determined, protein docking has long been present to computationally generate useful structure models. However, protein docking has long had the limitation that the consideration of flexibility is usually limited to very small movements or very small structures. Methods have been developed which handle minor flexibility via normal mode or other structure sampling, but new methods are required to model ordered proteins which undergo large-scale conformational changes to elucidate their function at the molecular level. Here, we present Flex-LZerD, a framework for docking such complexes. Via partial assembly multidomain docking and an iterative normal mode analysis admitting curvilinear motions, we demonstrate the ability to model the assembly of a variety of protein-protein and protein-nucleic acid complexes.


Assuntos
Domínios e Motivos de Interação entre Proteínas , Proteínas , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas/química
11.
Commun Biol ; 5(1): 316, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383281

RESUMO

Last year saw a breakthrough in protein structure prediction, where the AlphaFold2 method showed a substantial improvement in the modeling accuracy. Following the software release of AlphaFold2, predicted structures by AlphaFold2 for proteins in 21 species were made publicly available via the AlphaFold Database. Here, to facilitate structural analysis and application of AlphaFold2 models, we provide the infrastructure, 3D-AF-Surfer, which allows real-time structure-based search for the AlphaFold2 models. In 3D-AF-Surfer, structures are represented with 3D Zernike descriptors (3DZD), which is a rotationally invariant, mathematical representation of 3D shapes. We developed a neural network that takes 3DZDs of proteins as input and retrieves proteins of the same fold more accurately than direct comparison of 3DZDs. Using 3D-AF-Surfer, we report structure classifications of AlphaFold2 models and discuss the correlation between confidence levels of AlphaFold2 models and intrinsic disordered regions.


Assuntos
Proteínas , Software , Modelos Moleculares , Redes Neurais de Computação , Proteínas/metabolismo
12.
J Mol Graph Model ; 111: 108103, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34959149

RESUMO

Proteins are essential to nearly all cellular mechanism and the effectors of the cells activities. As such, they often interact through their surface with other proteins or other cellular ligands such as ions or organic molecules. The evolution generates plenty of different proteins, with unique abilities, but also proteins with related functions hence similar 3D surface properties (shape, physico-chemical properties, …). The protein surfaces are therefore of primary importance for their activity. In the present work, we assess the ability of different methods to detect such similarities based on the geometry of the protein surfaces (described as 3D meshes), using either their shape only, or their shape and the electrostatic potential (a biologically relevant property of proteins surface). Five different groups participated in this contest using the shape-only dataset, and one group extended its pre-existing method to handle the electrostatic potential. Our comparative study reveals both the ability of the methods to detect related proteins and their difficulties to distinguish between highly related proteins. Our study allows also to analyze the putative influence of electrostatic information in addition to the one of protein shapes alone. Finally, the discussion permits to expose the results with respect to ones obtained in the previous contests for the extended method. The source codes of each presented method have been made available online.


Assuntos
Proteínas , Ligantes , Modelos Moleculares , Domínios Proteicos , Eletricidade Estática
13.
Front Mol Biosci ; 8: 724947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34466411

RESUMO

Protein-protein docking is a useful tool for modeling the structures of protein complexes that have yet to be experimentally determined. Understanding the structures of protein complexes is a key component for formulating hypotheses in biophysics regarding the functional mechanisms of complexes. Protein-protein docking is an established technique for cases where the structures of the subunits have been determined. While the number of known structures deposited in the Protein Data Bank is increasing, there are still many cases where the structures of individual proteins that users want to dock are not determined yet. Here, we have integrated the AttentiveDist method for protein structure prediction into our LZerD webserver for protein-protein docking, which enables users to simply submit protein sequences and obtain full-complex atomic models, without having to supply any structure themselves. We have further extended the LZerD docking interface with a symmetrical homodimer mode. The LZerD server is available at https://lzerd.kiharalab.org/.

14.
Cell Stress Chaperones ; 26(4): 639-656, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33942205

RESUMO

Fic (filamentation induced by cAMP) proteins regulate diverse cell signaling events by post-translationally modifying their protein targets, predominantly by the addition of an AMP (adenosine monophosphate). This modification is called Fic-mediated adenylylation or AMPylation. We previously reported that the human Fic protein, HYPE/FicD, is a novel regulator of the unfolded protein response (UPR) that maintains homeostasis in the endoplasmic reticulum (ER) in response to stress from misfolded proteins. Specifically, HYPE regulates UPR by adenylylating the ER chaperone, BiP/GRP78, which serves as a sentinel for UPR activation. Maintaining ER homeostasis is critical for determining cell fate, thus highlighting the importance of the HYPE-BiP interaction. Here, we study the kinetic and structural parameters that determine the HYPE-BiP interaction. By measuring the binding and kinetic efficiencies of HYPE in its activated (Adenylylation-competent) and wild type (de-AMPylation-competent) forms for BiP in its wild type and ATP-bound conformations, we determine that HYPE displays a nearly identical preference for the wild type and ATP-bound forms of BiP in vitro and preferentially de-AMPylates the wild type form of adenylylated BiP. We also show that AMPylation at BiP's Thr366 versus Thr518 sites differentially affect its ATPase activity, and that HYPE does not adenylylate UPR accessory proteins like J-protein ERdJ6. Using molecular docking models, we explain how HYPE is able to adenylylate Thr366 and Thr518 sites in vitro. While a physiological role for AMPylation at both the Thr366 and Thr518 sites has been reported, our molecular docking model supports Thr518 as the structurally preferred modification site. This is the first such analysis of the HYPE-BiP interaction and offers critical insights into substrate specificity and target recognition.


Assuntos
Chaperona BiP do Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Monofosfato de Adenosina/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Simulação de Acoplamento Molecular/métodos
15.
Nucleic Acids Res ; 49(W1): W359-W365, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33963854

RESUMO

Protein complexes are involved in many important processes in living cells. To understand the mechanisms of these processes, it is necessary to solve the 3D structures of the protein complexes. When protein complex structures have not yet been determined by experiment, protein-protein docking tools can be used to computationally model the structures of these complexes. Here, we present a webserver which provides access to LZerD and Multi-LZerD protein docking tools. The protocol provided by the server have performed consistently among the top in the CAPRI blind evaluation. LZerD docks pairs of structures, while Multi-LZerD can dock three or more structures simultaneously. LZerD uses a soft protein surface representation with 3D Zernike descriptors and explores the binding pose space using geometric hashing. Multi-LZerD performs multi-chain docking by combining pairwise solutions by LZerD. Both methods output full-atom docked models of the input proteins. Users can also input distance constraints between interacting or non-interacting residues as well as residues that locate at the interface or far from the interface. The webserver is equipped with a user-friendly panel that visualizes the distribution and structures of binding poses of top scoring models. The LZerD webserver is available at https://lzerd.kiharalab.org.


Assuntos
Simulação de Acoplamento Molecular/métodos , Complexos Multiproteicos/química , Software , Antígenos CD/química , Proteínas de Bactérias/química , Moléculas de Adesão Celular/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Humanos , Internet
16.
Nat Commun ; 12(1): 2090, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828103

RESUMO

An increasing number of density maps of biological macromolecules have been determined by cryo-electron microscopy (cryo-EM) and stored in the public database, EMDB. To interpret the structural information contained in EM density maps, alignment of maps is an essential step for structure modeling, comparison of maps, and for database search. Here, we developed VESPER, which captures the similarity of underlying molecular structures embedded in density maps by taking local gradient directions into consideration. Compared to existing methods, VESPER achieved substantially more accurate global and local alignment of maps as well as database retrieval.


Assuntos
Microscopia Crioeletrônica/métodos , Bases de Dados Factuais , Modelos Estruturais , Software , Modelos Moleculares , Conformação Proteica , Proteínas/química
17.
Sci Rep ; 11(1): 7574, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828153

RESUMO

Protein 3D structure prediction has advanced significantly in recent years due to improving contact prediction accuracy. This improvement has been largely due to deep learning approaches that predict inter-residue contacts and, more recently, distances using multiple sequence alignments (MSAs). In this work we present AttentiveDist, a novel approach that uses different MSAs generated with different E-values in a single model to increase the co-evolutionary information provided to the model. To determine the importance of each MSA's feature at the inter-residue level, we added an attention layer to the deep neural network. We show that combining four MSAs of different E-value cutoffs improved the model prediction performance as compared to single E-value MSA features. A further improvement was observed when an attention layer was used and even more when additional prediction tasks of bond angle predictions were added. The improvement of distance predictions were successfully transferred to achieve better protein tertiary structure modeling.


Assuntos
Aprendizado Profundo , Proteínas/química , Alinhamento de Sequência/métodos , Caspases/química , Caspases/genética , Modelos Moleculares , Redes Neurais de Computação , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Alinhamento de Sequência/estatística & dados numéricos , Análise de Sequência de Proteína
18.
Methods Mol Biol ; 2165: 231-244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32621228

RESUMO

Modeling the tertiary structure of protein-protein interaction complex has been well studied over many years, especially in the case where the structures of both binding partners are roughly the same before and after binding. However, the assembly of complexes with less-ordered partners is a much harder problem, and modeling even small amounts of flexibility can pose a challenge. In an extreme case, where one of the binding partners is intrinsically disordered before binding, we have previously shown that by initially disregarding the coupling between windows of these intrinsically disordered proteins (IDPs), we can reliably assemble complexes involving IDPs up to at least 69 residues long. Here, we detail the use of the IDP-LZerD package and protocol.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Simulação de Acoplamento Molecular/métodos , Software , Sítios de Ligação , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteína Básica da Mielina/química , Proteína Básica da Mielina/metabolismo , Ligação Proteica
19.
Curr Opin Struct Biol ; 64: 1-8, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32599506

RESUMO

Computational protein-protein docking is one of the most intensively studied topics in structural bioinformatics. The field has made substantial progress through over three decades of development. The development began with methods for rigid-body docking of two proteins, which have now been extended in different directions to cover the various macromolecular interactions observed in a cell. Here, we overview the recent developments of the variations of docking methods, including multiple protein docking, peptide-protein docking, and disordered protein docking methods.


Assuntos
Biologia Computacional , Proteínas , Substâncias Macromoleculares/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Ligação Proteica , Proteínas/metabolismo , Software
20.
Methods Mol Biol ; 2074: 95-112, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31583633

RESUMO

Many important functions in a cell are carried out by protein complexes with more than two subunits. Similar to the folding of a single protein, multimeric protein complexes in general follow an energetically favored assembly path. Knowing the assembly path not only provides critical information about the molecular mechanism of the assembly but also serves as a foundation for artificial design of protein complexes, as well as development of drugs that interfere with complex formation. There are experimental approaches for determining the assembly path of a complex; however, such methods are resource intensive. We have recently developed a computational method, Path-LZerD, which predicts the assembly path of a complex by simulating the docking process of the complex. Here, we explain how to use the Path-LZerD software with examples.


Assuntos
Proteínas/química , Biologia Computacional , Bases de Dados de Proteínas , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Multimerização Proteica , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...